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Introduction

The motivation for this paper arises from a result of Bourgain [2] (see also [14])
which characterizes the U.M.D. property of a Banach function space in terms of
a version M of the Hardy-Littlewood maximal function.

If X is a Banach space of functions on a given measure space  and if we view
a function f: R® — X as a function of two variables f(z,w),z € R*,w € 2, M
is just the ordinary Hardy-Littlewood maximal operator acting on the variable
z. Then Bourgain’s characterization says that X is U.M.D. if and only if M is
bounded in L% (R™) and also in L} ..(R") for some p,1 < p < o0, where p' is the
exponent conjugate to p and X' is the function space dual.

We can also view M as a supremum of averages, but a supremum in the lattice.
We adopt this point of view and we study those Banach lattices X for which M
is bounded in L4 (R") for some p,1 < p < oo.

We call this property the Hardy-Littlewood (H.L.) property. Actually since
we consider general lattices, our definition is slightly more complicated because
we are forced to consider suprema of finite families only.

The main idea is that the operator M has a smooth version that can be viewed
as a vector-valued singular integral. In section 1 we use the general theory of
vector-valued singular integrals (as in [15]) to obtain characterizations of the H.L.
property in terms of the boundedness of M in different function spaces associated
to the lattice X. In section 2 we present several examples of lattices having or
not having the H.L. property. It turns out that both £ and ¢ have the property
H.L. while ! does not have it. We also see that some convexity is necessary in
order to have the H.L. property.

In section 3 we use the operator M (or its smooth version) to define new Hardy
spaces and also a B.M.O. associated to the lattice X and we study the relation
between the new spaces and the standard ones.

Finally in section 4 we take up several questions which are meaningful when
one works in the torus instead of R™. For example we see that even though L'
does not have the H.L. property, however M is bounded from L7 ,(T) to L} .(T)
for 1 < p < oo and 0 < a < 1. This extends a result of Bourgain for the Hilbert
transform (see [4]).

We want to thank Felipe Zo for many interesting conversations concerning

section 4.
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1. Main results

By a Banach lattice we shall mean a Banach space X over the field R of the
real numbers, together with an order relation < on X, satisfying the following
properties:
(i) = £ y implies  + 2 < y + z for every z,y,z € X.
(i1) az > 0 for every > 0 in X and every a > 0 in R.
(iii) for every z,y € X, there exists the least upper bound sup{z,y} and also
the greatest lower bound inf{z,y}, and
(iv) if || is defined as |2| = sup{z, —z}, then the order relation |z| < |y| implies
the inequality between the norms ||z|| < |lyl|.
Whenever it is important to distinguish between the norms in different Banach

spaces, we shall denote the norm in X by || [jx.

Definition 1.1: Let X be a Banach lattice and let J be a finite subset of the
set Q4 of the positive rational numbers. Given a locally integrable function
f: R™ — X (this means, of course, a strongly measurable f such that the scalar

function y — || f(y)||x is locally integrable) we define:

1
M = [ — d
Jf(z) ?‘1611-; |B(.t,7')| B(z,r) If(y)l Y

where |B(z,7)| = c,r™ is the Lebesgue measure of the ball B(z,r). &

We shall always denote the Lebesgue measure of a set E by |E|.

Notice that the sup in definition 1.1 is a sup in the lattice X. This accounts for
the need to take just a finite collection of radii J. This difficulty will disappear
when we deal with the most relevant examples, which will turn out to be order
complete (see the remark below).

The family {M;} where J ranges over all finite subsets of Q,, will be our
main object of study. We shall investigate the boundedness of M ; and related
operators in the Bochner-Lebesgue spaces LY (R"), 1 < p < oo, the Lorentz
space weak-L%(R"), the Hardy space H)}(R") and the space B.M.O.x(R").
For the definitions of these spaces, we refer the reader to [15], where one can
find a complete account of the theory of vector-valued singular integrals, which
will be the basic tool in what follows. Sometimes we shall need to consider the
analogues of the spaces listed above for the case of finite measure, i.e. for T", the

n-dimensional torus, We shall also have to deal with the weighted spaces L% (w)
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where w is a weight in the class Ao of Muckenhoupt. These spaces appear also

in [15] and the theory of Muckenhoupt weights can be seen in [6] and [10].

Definition 1.2: We shall say that a Banach lattice X satisfies the Hardy-Little-
wood (H.L.) property if there exists some pg, 1 < pp < oo such that the operators
M ; are uniformly bounded in LE(R"), that is, the inequality:

IMafllzemmy < ClEll 2o (mm)
holds with C independent of J. ]

Remark 1.3: The H.L. property does not depend on the dimension n.

One can dominate M (in the lattice order) by an average over a hemisphere
of the corresponding one dimensional operators in different directions, exactly as
one does in the method of rotations (see [8], p. 79 or {10}, p. 223). That way we
prove that if X has the H.L. property with n = 1, then it has it also with any
other n.

The converse is even easier, perhaps passing through the corresponding prop-
erty in finite measure (T"), which turns out to be equivalent as well. We shall

keep n fixed with the understanding that its particular value is irrelevant. 1

Remark 1.4: Let (2,5 ,u) be a complete o-finite measure space. A Banach
space X consisting of equivalence classes, modulo equality almost everywhere
(a.e.), of locally integrable, real valued functions on 2 is called a Kéthe function
space if the following two conditions hold:

(1) If |f(w)| < |g(w)| a.e. on © with f measurable and g € X, then f € X and

WAl < Nlgll-
(2) For every E € ) with p(E) < oo, the characteristic function Xg of E
belongs to X.

For the main facts on Banach lattices and Banach function spaces, we refer the
reader to {13], whose terminology and notation we shall adopt. Another useful
reference is [1].

Every Kothe function space is a Banach lattice with the obvious order (f > 0
if f(w) 2 0 for a.e. w).

If X is a Kothe function space and f: R” — X is a locally integrable function,

it is clear that M ;f(z) is a function of w given by:

1
2)(w) = sup ———— Lw)|d
Mf(e)w) = sup rpes | IFwsw)ldy
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where sup is now the sup in the order of R. In this situation we can see f and

M ;f as functions on R™ x (2.
Moreover, in this case we can define the operator M given by:

(1.5) Mf(z,w) = sup |f(y,w)ldy.

reQ; IB(:E, T‘)I B(z,r)

We recall that a Kothe function space is said to have the Fatou property (see
[13]) if everytime we have a sequence of functions f, € X, such that f,(w) >0
for a.e. w, fa(w) T f(w) for a.e. w and also sup,, || fa|| < 0o, then we have f € X

and ||f|| = im |l

It is a simple consequence of Lebesgue’s monotone convergence theorem for
scalar functions that the space L?(R") has the Fatou property provided X has
it. Therefore, a Kothe function space having the Fatou property satisfies the H.L.
property if and only if there exists some py,1 < py < 00 such that M is bounded
in LR (R™). ]

We shall need to consider as auxiliary operators, smooth versions of M ; and

M which we define next:

Definition 1.6: Let ¢: [0,00[— R be a smooth function such that

Xo,1)(t) < o(t) < Afo,21(2)

for every t > 0.
Let X be a Banach lattice, J a finite subset of Q4 and f: R* — X locally

integrable. We define
1 |z -yl
—_— d
o /R"sO( . )f(y) y',
z € R", where ¢y = [, ¢(|z()dz.
If X is a Kothe space of functions on 2, we can also define:

= Lo (B rwana

In the definition of the M, ;'s, the sup and the | | are those in X, while in the
definition of M, they are the corresponding ones in R. 1

Mo, s f(x) = sup
red

M, f(z,w) = sup
r€eQq

The theory of vector-valued singular integrals can be applied to obtain the
following list of different characterizations of the H.L. property.
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THEOREM 1.7: Given a Banach lattice X and a function ¢ as in the previous
definition, the following conditions are equivalent:

(1) X has the H.L. property.

(2) There exists some py,1 < pg < 00, such that

IMe,2fllL7o mn) < Croll Fl 20 mm)-

(3) Forevery p,1<p< o0

iMifliLe rny < ColifliLe (rn)-

(4) For every p,1<p< o0
”Mtp,lf"L}(R") < Cp"f"L}(R")-

(5) Iz € R IMuf@lx > M| < S foo IF@)lxde.

(6) Iz € R™ M1 f@)lx > N < 5 fon 1)l xd
() My, sfllLy (rey < Clifliny re)-

(8) IMyp,sfllB.M.0.x®") < CllfllLg ®n)-

(9) If w is an Ay weight in R" and 0 < p < oo,

/ Mo, f(2) Ik w(z)de < Cp(w) / (M(|Ifllx )(2))P w(z)dz,
R® R»

where M is the Hardy-Littlewood maximal operator in R*, which is applied
to the scalar function z — || f(z)||x.

(10) For every cube Q (with sides parallel to the coordinate axes, as we shall
always assume) and every function f € L (R") having support contained
in Q (supp f C Q) we have:

/Q 1My sf(@)lxdz < ClfllLz Q)

The constants C,Cp,Cp(w) (not the same at each occurrence) depend on
X,p,p or w, but do not depend on J.

Proof: QObserve that for every r > 0, we have:

T—-y
Xpz,)(¥) S (l " I) < Xp(z.20)(¥); z,y €R"
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and, consequently, if f: R® — X is a positive function:

Ko )W) < v (' y‘) £4) < Xagean®)F W)

so that we get:

Mif(@) € =My if(@),  z€R"

and

M., (z), z€R"

These inequalities, together with the fact that, for any function f: R* —» X

we have

Hf@)lHx = 11 f(=)llx

immediately yield (1) <= (2), (3) <= (4) and (5) < (6).

Next we shall prove that (2) = (6).

We just need to consider one fixed J and see that the boundedness of M, ; in
L% implies that it is bounded from L% to weak-L% with a constant depending
only on its norm as an operator bounded in L%.

In order to do that, we shall consider an operator T; sending X-valued func-
tions into functions taking values in the Banach space X(J), consisting of the
sequences (z)reJ of elements z, € X with ||(z,)resllx(s) = || sup |z-|||x-

For f: R® — X locally integrable, we define:

= e (e ')f(y)dy)rej-

T;f(z) = (Col

This is to be viewed as a linearization of the operator M, ;. Since

IT2f (@)l x (0 = IMe,s£()l|x

the boundedness of M ; in L(R") is equivalent to the boundedness of T
from LR(R") to L%, (R").

But T is a linear operator given by convolution with a kernel K;(z) €
L(X,X(J)) (bounded linear operators from X to X(J)) namely:

L (lal ,
o= (e (F)0) o vex
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1 (=l
cr"‘pr'

The smoothness of ¢ guarantees that K satisfies the so-called standard esti-

1K s ()l cex,x(n) = sup

mates for Calderén-Zygmund kernels, that is:
|Ks(z)|| < Clz|™

and
I|IK5(z) — Ks(z")|| < Clz — 2'||z| ™.

Note that these estimates are uniform in J, i.e., the constant C does not depend
on J. Now the theory of vector-valued Calderén-Zygmund operators, as given
in [15] can be applied to T; to obtain

(18) [z € R [Tef@lxen > NI < 5 [ IF@)lxde
R"

But this is precisely (6)
Our next step is to see that (6) = (9).
Given J fixed we consider the X (J)-valued operators

Tjef(z) = (colr" /Iz-y|>eso (lx l) f(y)dy) ’ e>0

reJ

and the corresponding maximal operator
T;f(z) = sup || Tsef(@) x(0)-
>0
Now for this operator we have the following Cotlar’s inequality:

(1.9) Tjf(2) < Co{(MUITflxn)(@)'® + M fllx)(=)}

valid for 0< 8§ < 1.

Inequality (1.9) is obtained exactly as in [11], p. 56, by using just the weak
type (1.1) of T, (that is, (1.8) which is equivalent to (6)) plus the standard
estimates.

Now it is a simple consequence of (1.8) and Kolmogorov’s inequality (see {11],
p. 5 or [10], p. 485) that the operator f —— (M(||TJf||§((J)))1/‘s for0<é<1lis
bounded from L% (R") to weak-L!(R"). Therefore, (1.9) implies that:

(1.10) e € R™: T3f(z) > A} < S / 1£(2)llx dz-
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Now from (1.10) we derive, just as in [6] the good-) inequality

w({z € R™: Tjf(z) > 2A and M(||f|lx)(z) < ¥A})
< CY’w({z € R™: Tjf(z) > A})

for w € Aw. This good-A inequality produces, in the usual way (see [6]) the
inequality:

am [ @feyeE<c [ M@ e

for w € Ay and 0 < p < 00. Of course C depends on p and w, C = Cp(w). In

order to obtain 9) from (1.11) we just need to observe that

1 Tsef(z) — Taf(z)llx (s
5/ |Ks(z — y)XB(z,e)(¥)f (W)l x(nydy
Rn

/ 1
= sup
R» reJ

cpr®?
<< _ / FWldy =0, e—0
= (min J)" Jp(z,e) ’

so that we can use Fatou’s lemma. to obtain:

o (224) ‘ 1F)lx Xage.(w)dy

| Mo sf@lcu@ds = [ 1@ pula)ds
< / (T3 f(2)Pw(z)dz < C ] M 1)) w(z)de
Rn R"

and we get (9).

It is immediate that (9) implies (4). We just need to take w =1 and use the
boundedness of M in L? for p > 1.

Since (4) trivially implies (2), we have obtained the equivalence of (1), (2), (3),
(4), (5), (6) and (9). It is rather simple to obtain (10) from (2).

Let f be a function in L§ with supp f C Q. Then

t/po
a1 L Mestlxe < (g [ 1M ssege)

1 1/po
<0 (i [, 1@Ndz) < Uiy,
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Now, assuming (10), we shall derive (8).
Let f € LE. Given a cube Q with center g, we consider the cube Q with the
same center and diameter twice that of @, and decompose f = fi + fo where

hH = fXQ. Then we have

i1 [, M0 35() = Mo sl
< ré—'./Q”TJf(x) —TJfZ(xO)"X(])d.’E
1 1
< quuTJfl(z)"xu)dz + l—Q—I/QllTsz(z) — Ty fa(zo)l| x (sydz.

The first term in this sum is handled by using (10):

1 1
@ / ITshi@xcrde = / Mot fi(@)llxdz

< / 1My sfi(@)llxdz < Clfllus-

For the second term we just need to use the standard estimates for K;. We

get:

|z — 2ol
Tsa(e) = Toalanllxen <€ [ mporir o=

S Cllflleg-

AT I1f ()l xdy

That way we obtain (8).
We have actually found that T is bounded from L§ to B.M.O. x().
Now from (8) one can obtain (7). We just need to take an atom a € H and
show that:
M, sally mmy = [ Tsally , =) < C-

That @ is an atom means that a: R® — X is supported in a cube Q, with
center zo, say; a has also average 0 and it satisfies ||a(z)||x < 1/|Q| a.e. For
z ¢ Q, the doubled cube, we have:

Tja(z) = /Q K (z - y)a(y)dy
- /Q (K1(z —y) = Ks(z — 20))a(y)dy
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which, together with the standard estimates, gives:

Mo sa(e)lx = ITsa@)lxc < Cle =0l [ fy=zolllaty)lxdy
< ClQI"* |z — zo| ™!
and, consequently,
/ |IMy,sa(z)]xdz < C.
RN Q

On @ we can use (8) which tells us that

Mg sallB.mo.x <CIQITT.

In particular

1 -1
i /Q 1My, sa(z) — (M sa)gllxdz < ClQI".

But note also that if Q* is a cube adjacent to @ and with the same size
[(Mg,10)5 — (Mg, sa)q-llx < C|Q|™

as one sees by adding and substracting the average on the smallest cube contain-
ing both Q and Q*.
Also, since @* C R™* Q

(M, 1a)e-llx < CIQI™Y,

so that, actually,
(M, sa)gllx < CIQIY,

and
1

@/;.?"Mwm(x)“xdx <cloi-".

We get finally

[ Mg aaixas= [+ [ <c
R" Q JR"™NQ

That (7) implies (10) is almost immediate. We just need to go from f to an

atom

a(z) = 2llfllez 1QD ™" (f(2) - fo).
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We have
/Q 1M1 (@)l xdz < /Q M 1(f = Fo)(@)lxdz

+1Q1- Ifellx <20 flleg QMg sal Ly
+1Q1- Ifllg < Cliflicg Q!

We have thus shown that (7), (8) and (10) are equivalent. On the other hand
they imply (2). This is obtained by interpolation. Indeed, from (10) we get, after
fixing J, that the linear operator T is bounded from H to L, and also from
L% to BM.O.x(,). Interpolation can be applied in this setting to get (2). This
finishes the proof of the theorem. |

2. Examples of lattices having and not having the Hardy-Littlewood
property

A large class of examples is provided by those K6the function spaces satisfying

the condition known as U.M.D. (from “unconditional martingale differences”).

Recall that a Banach space X is said to be U.M.D. if it satisfies an inequality

n n
I erdlies, < CoxllD dellez
k=1 k=1

for all n € N, &x = %1 and for all X-valued martingale differences {di}s>1,
where p is some exponent such that 1 < p < oo (see [5]).

It is a result of Bourgain [2] (see also [14]) that a K6the function space X is
U.M.D. if and only if the operator M defined in (1.5) is bounded in L% and in
L’)’;,, where 1 < p < 00, p' is the conjugate exponent and X' is the function space
dual of X. As a consequence of Bourgain’s result we get, in our terminology, the
following.

PROPOSITION 2.1: For a Kéthe function space X with the Fatou property, the
following conditions are equivalent:

(a) X is UM.D.

(b) Both X and X' satisfy the H.L. property.

For a general Kéthe function space, still (a) implies (b).

If, with the notation of remark 1.4, the underlying measure space § is the set

of positive integers N, with g the counting measure, we have, for

f(e) = (fi(2));,  Mf(z) = (Mf;(z));
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Let us examine in this case, the behaviour of different sequence spaces with
respect to the H.L. property.
We know that £P is U.M.D. provided 1 < p < oo. Thus, for this range £? is

H.L.
This fact follows from the inequality

oo oo
(22) Q1M P) Plliecmny < Crgll B 1551 P uacany-
i=1 =1

We just need this inequality for some ¢, 1 < g < co. Then theorem 1.7 tells us
that it is valid for any ¢,1 < ¢ < oo.

When ¢ < p, (2.2) is simply a consequence of the fact that M is linearizable
and positive (see [10], p. 482). For general ¢ the inequality was obtained by
Fefferman and Stein [9]. Actually (2.2) is true even for p = oo, in the sense that

(2.3) lIsup M fillLe(rmy < Cpoollsup | filllLe(rm)-
3 7

This inequality is simply a consequence of the boundedness of M in LY(R")

since

sup Mfi(z) < M(sup |f;]).
¥

As a matter of fact, the way to obtain (2.2) in [10] for ¢ < p, is to interpolate
in p between p = ¢ and p = oo (i.e. (2.3)), interpolation being possible because
M is linearizable.

Now (2.3) tells us that £ has the H.L. property. It also implies that co has the
H.L. property . Indeed we just need to observe that the subspace F consisting of
those f = (f;); € LI (R") such that all but a finite number of the components
f; vanish almost everywhere, is dense in L] (R") and is obviously mapped into
itself by M, so that (2.3) implies

IMSllLe, mm) < Cpooll fllLg, (rn)-

Note that ¢y does not have the Fatou property, while £° does. The Fatou
property is equivalent to having X" = X (see [13], p. 30) and we have cj = £*°.
PROPOSITION 2.4: ¢! does not satisfy the H.L. property.

Proof: We shall prove that M is not bounded in L%, (R),1 < p < c0. According
to remark 1.4 this is all that we need since £! is a Kothe function space with
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Fatou property. Let m be a fixed natural number and consider the function

Fpn: R — (! given by:
Fin(z) = (fi(z), f2(2), -, fm(2),0,0,...)

where fj(z) = X]L—_l’j.](-fL 1<j<m.

Then

|Fn(2)lles = Zf](z = Ajo,1(z)

=t

Emllr, my = 1.

On the other hand if j < k and z € [k — 1/m, k/m], then
Mfi(e) > T
i(#) 2 ¢ T
Therefore:

/ [ MFu(z)l[p dz = / (Z Mfi(z))Pde

j=1

But Ay — 0o (note A, > C' Y72 ,(1/5)) and the proof is complete. |

Definition 2.5: A Banach lattice X is said to be p-convex 1 < p < oo, if the
following inequality holds:
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il(zm: lz;1P)}?)x < C,,(f: ll2;11%)"/

j=l j=]
with a constant C, independent of m. |
When X is alattice of functions or, more generally, when X is order continuous,
the concrete representation of the lattice allows us to define (3_72, |z ;PP in
the obvious way. However, for a general lattice, these expressions need to be
defined (see [13] 1.d). By combining theorems 1.£.12 and 1.£.7 of [13], we obtain

the following useful result.

PROPOSITION 2.6: Suppose X is a Banach lattice which is not p-convex for
any p > 1. Then, for every ¢ > 0 and every positive integer m, there exists a
sequence {e;}1%, of pairwise disjoint elements in X (pairwise disjoint means that

inf{|eil, |ej|} =0, ¢ # j) such that:
2.7 1-e) ) lail <) aiedlx < ail
i=1 i=1 i=1

for every choice of scalars {a;}.
With the help of this proposition, we shall prove the following

THEOREM 2.8: If a Banach lattice X satisfies the property H.L., then X is p-

convex for some p > 1.

Proof: Assume that X satisfies H.L. and also that X is not p-convex for any
p > 1. From this we shall be able to show that ¢! satisfies H.L. But this is a
contradiction that proves the theorem. Let us see the details.

Let € > 0 and f(z) = (fi(z)): be a positive function f € L,. According to
proposition 2.6, given m there exists a family {e;}, of pairwise disjoint elements
in X satisfying (2.7).

Let us consider Fi,,(z) = (fi(z), ..., fm(2),0,0,...). We shall make use of the
following fact:

If z1,...,2, are positive pairwise disjoint elements in X, then 12, z; =

sup {z;}.

1<i<m
If we just have two elements a and b this follows from:

0 = inf{a, b} = — sup{—a, -b}
= —(sup{—a+a+b—b+a+b}—(a+b))
= a + b — sup{a, b}.
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For the general case we use induction:

m m~1
Y o= (Z zs) +zm= sup {zi}+zm
=1

i=1 1<i<m-1

= sup {zi+zm}= sup {sup{zi,zm}}
1<i<m~1 1<i<m-1

= sup {z:}.
1<i<m

In the same fashion one can prove that for pairwise disjoint elements e¢; and
scalars a; ,|Yiv, aiei| = Yiv, |ai||eil, so that in (2.7) we can assume that the
elements e; are positive.

Since ~
l;fi(x)ei = lz?spm{fi(m)ei},

we have ~ o
MY fiei)(z) =Y Myfi(e)e;
i=1 i=1
where we have written M for the operator M corresponding to the lattice R.
This and (2.7) allow us to relate the operators M of €' and X, as follows:

m

f W@t = [ (S Mfieras

1 m
< m/;v ll;Mer(Z)efll')’cdz

- (T-l?)F /R MUY frea)@) I de

C(X,p)

s (1-¢)? Jr
C(X,p) - ?
< A= Jor (;f(@) de

_CXp)
(1-ep Jr

By letting m — oo we would get that ¢! has the H.L. property, which is a

Y f@elyda
i=1

| Fn(@)lf dz.

contradiction. [ |
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Remark 2.9: Tt has to be noted that M is in general unbounded in L§. We shall
give an example with X = €2. Let f(z) = (fj(2))52; where f; = X[3-i 2-i+1),
1 <j < oo. Then ||f(z)llez = Ao, j(2) and consequently f € Lg. But if
z €[0,277],0 < j < N, then Mf;(z) > 1/2. Therefore

N
IMf@lle = Qo (MF())? 2 (1/2)N?

J=1
so that Mf & L3, ]

Remark 2.10: It is a very simple fact that if we have a linear and positive
operator T bounded from Y to Z, both Banach lattices, then the vector extension
of T satisfies:

m

(2.11) N 1Ty 1P) 20z < ITHNC Tyil2) PNl
1=1

J=1

for every n and 1 < p < oo.

(See [13], 1.d.9 for the proof, and also [12]).

The fact that £' does not have the H.L. property can be used to show that
(2.11) may fail for an operator which is only sublinear but still positive. For
p = 1 the counterexample is simply T = M with Y = Z = LY(R"), ¢ > 1.

For a given p > 1, we can take T(f) = (M(|f[?))!/? which is bounded in
LY(R") if ¢ > p. However (2.11) fails with Y = Z = L9 because, in this case,
the left hand side of (2.11) is || 3_7_, M(|fj|”)||2/q',’, and in the right hand side we
have || 37, | f,~|”||}/",’,, so that (2.11) would be equivalent to the boundedness of
Min Lg,’ , which does not hold. [ ]

3. Some Hardy space theory

Definition 3.1: Given a Banach lattice X and a number p such that 1 < p < oo,
we define H (R") to be the space consisting of those f € L% (R") such that for
every finite set J C Q4, My, s f € L% (R") and sup My, sf]l 12 (r») < 0.

J

We endow this space with the norm:

| fllez, rey = I £l 22 ey + sup Mo, s fll 2, (mn)-
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Definition 3.2: Given a Banach lattice X and a locally integrable function
f: R® — X, we define the “lattice sharp maximal function” as

M f(z) = sup o0 / 1F() — faldy

z |Q

where fgq is the vector 1/|Q| fQ f(y)dy.
Of course the sup is in X and does not have to exist for all points . We say

that f is in B.M.O.x(R") if M#f € L¥(R"). This implies, in particular, that

the sup exists for a.e. z and we define the “norm” in this space as

Iflis.m.0.x @™ = IM* fllLe @)
]

THEOREM 3.3: For a Banach lattice X, the following conditions are equivalent:

(1) X satisfies the property H.L.

(2) H%(R") = L% (R™) 1<p< oo

(3) Hx(R") = Hx(R").
Proof: By definition:
HE(R™) C LY (R™).

Moreover, it is well known (see [3]) that for any Banach space E, the atomic
Hardy space H},(R") coincides with the maximal Hardy space defined as the set
of those functions f € LL(R") such that sup ller * f(z)llg belongs to L!(R™),
where ¢, is the approximate identity a.ssocxated to ¢ smooth with compact sup-

port, as, for example, the one in definition 1.6.

Since

sup llor * f(2)llx < IMep,sf()llx

we get

Hx(R") C Hx(R").

On the other hand, if X satisfies property H.L., by using property (4) in
theorem 1.7, we see that

LA (R™) C HY(R"), l1<p<o
and, if we use (7) in the same theorem, we get:

HY(R") C Hy(R").
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That way we have seen that (1) implies both (2) and (3).

For the converse implications, observe that (2) implies that property (2) in
theorem 1.7 holds; but this is equivalent to H.L. Analogously (3) implies that
property (7) in Theorem 1.7 holds. This is again equivalent to H.L. ]

The following example gives an idea of the size of H}, when X fails to have
the H.L. property. Of course the example is for X = ¢!.

Example 3.4: For a natural number N let ¢}, be the space of finite sequences
(a; );V=1 of real numbers, which we view as a finite dimensional subspace of ¢! by

completing each vector in £}, with infinitely many zeroes. Then

U Hp Cy Hp Cx Hy,
N>1

Indeed, the second inclusion is proper because £! does not satisfy H.L.
As for the first one, let a = (aj)?;, be an atom in Hy, . Then each of the
N

componenet functions a; is a scalar atom, and, consequently:
— AN 1
Mea = {Mya;};., € Ly

so that H}}v C Hp.

More concisely: H ‘]}v = 'H};’ C H}.

Now to give an example of an f € H}, with infinitely many non-vanishing
components, we simply have to take a scalar atom a: R® — R and define f(z) =
(277a(z));. It is clear that f € H) since

IMef(2)ler = [{Mp(277a)(z)};
=Y 279 |My(a)(z)| = |Mya()|.

Jj=1
Recall that
(L% (R™)* =L%.(R"), 1<p<oo and (HY(R")" =B.M.O.x-(R")

if and only if X* satisfies the Radon-Nikodym property (see 7] and (3]). There-
fore, the following theorem is true:
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THEOREM 3.5: For a Banach lattice X, the following statements are equivalent:
(1) X satisfies the H.L. property and X* satisfies the Radon-Nikodym property.
(2) (HER"))* = LL.(R™), 1<p<oo.

(3) (H%(R"™))* = B.M.O.x-(R").

The next example shows that, even for such good a lattice as £2, the space

B.M.O. is too small.

Example 3.6: LE(R") ¢ B.M.O.2(R") and if we define €% in a similar way
to £}, in example 3.4, we have

|J B.M.O.p3, Cx B.M.O.x Cx B.M.O.o.
N>1

Let f(z) = (fj(z))$2, be the function considered in remark 2.9. It is easy
to see that for z € [0,27 V] we have |M#f(z)||l;z > CN'/? and, consequently
M#f ¢ L% or, in other words: f ¢ BM.O.p.

Thus L ¢ B.M.O.p.

Now if f € B.M.O.p2 (R"), let f(z) = (f,(:::));‘l=1 Then

N 1/2
— # o = _1_ {x) — ; 2 .
Ifls.a.0. = IF7 2 sup IQI/Q (,:Zl £i(=) (fJ)Ql) d

2) 1/2

On the other hand, if we have a scalar function g € B.M.O.(R"), the function
f: R™ — £2 given by

But

N

“M#f"f,;’; = esssup (2

i=1

1
s /Q 1) = (Fi)aldy

N
<Y N F e < NIF* |-

i=1

o) = {22}

J j=1

belongs to B.M.O.;2(R"), but obviously not to any B.M.O.z .
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Suppose now that f(z) = (fj(z)); is in B.M.O.2(R™). Then:

S (@ = {Z(sup i / 159) - (F)eldy}/2

j=1

= "M#f(z)"ﬁ < ”M#flll,;;-
#(z) = sup —— ol
4o = s [ 1906) = Salody

< sup (l%./q Il f(v) —fqllfzdy)ll2

1/2
= sup (Ié—iLZIfj(y) - (f,-)ledy)

1/2
LS ()
< Czt;; (IQl /sz::l(f, (y) dy)

< CIM* fl 1z

Thus
1fllB.M.0.2 = If*lleo < CIM*fl|Leg = CIflls.M.0.p2-

Observe that an important step in the proof has been the Fefferman-Stein
inequality fQ lg* < C [y |g#|? applied to the functions g = f; — (f;)q (see [10]
or [11]). This can be done for sequence spaces or, in general, for Kothe function

spaces.

4. The compact case

In this section our basic space will be, instead of R", the torus group T, which
we shall identify in the usual way, with the compact interval [0,1]. Then Haar
measure is just the ordinary Lebesgue measure in [0,1]. The funcion spaces L?,
B.M.O,, etc. will be those associated with our basic measure space T = [0, 1].

We shall be considering some non-locally-convex spaces. Recall that if 0 < r <
1, to say that F is an r-Banach space means that we have a quasi-norm || ||r
(i.e., a functional satisfying | A f]|r = |A||| f]|F for every f € F and every scalar )
and also

If +9llr < K(IflF +llgllr)
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for every f,g € F) such that || ||} satisfies the triangle inequality

(ie Ilf +gllr < UfIF + llgliF)

and F is also complete as a metric space with the distance induced by || ||F.
Typical examples are the Lebesgue spaces L™ and the Hardy spaces H", 0 <
r<l.

For r = 1, r-Banach space means, of course, Banach space

Definition 4.1: Let B be a Banach space, and F an r-Banach space, 0 < r < 1.
W shall say that an operator T: B — F' is sublinear if:

(@) |ITAHIF = IMIT()l|F for every f € B and every scalar A, and

(b) IT(f + DIy < ITNIF + T3

This notion extends the more restrictive, applicable to the casse when F'is an

r-Banach function space, which requires instead of a) and b):

(@) |T(Af)(z)| = |MIT(f)z)] for a.e. z, every f € B and every scalar A, and

(b)) IT(f + 9)(@)| < IT(f)(z)| + |T(g)(2)| for a.e. z and every f,g€ B.

Given an r-Banach function space F, we consider the space L} = L%([0,1])
which is the space of the functions f: [0,1] — F strongly measurable, with the
topology of convergence in measure (see [10] p. 529).

We have the following version of the Nikishin-Stein theorem.

THEOREM 4.2: Let B be a Banach space consisting of functions defined on the
torus with values in some Banach space. Suppose that B is invariant under trans-
lations (i.e. translations are isometries in B). Let F be an r-Banach space, and
T: B — L% an operator sublinear, continuous and invariant under translations.
Then T is bounded from B to weak-L};

Proof: We just need to verify that Theorems 1.7, 2.4 and Corollaries 2.7 and
2.8 in chapter VI, of [10] continue to hold when we replace L? by L%. The proofs
go through without significant changes. ]

We shall apply this theorem to the analogue for the torus of the operator M
defined by (1.5), analogue which we shall also denote by M. We obtain the

following result:

THEOREM 4.3: Let 0 < a,8 < 1. Then
(1) M is bounded from L}, to Lg,,.



Vol. 83,1993 THE HARDY-LITTLEWOOD PROPERTY OF BANACH LATTICES 199

(2) M is bounded from L}, to weak-L}..

Proof: Like in Remark 1.4, when we view M as an operator acting on functions
defined in T x T, M is just the ordinary Hardy-Littlewood maximal operator
M acting in the first coordinate, that is:

Mf(I,W) = M{f(vw)}(z)

But, in the case of the torus, which has finite measure, the weak type (1,1) of
M is equivalent to the fact that M is bounded from L! to L™ for every a such
that 0 < « < 1 (Kolmogorov’s inequality, see [10], p. 485). Thus, for any such a
fixed, we have:

[ ims@ngeds= [ [ sty dud
= [ [ otsconiedsdo

e[ ([ lf(x,w)ldx)udw
<o [ i)

i.e. M is bounded from L}, to L{.. This implies that M is bounded from L},
to LY.. Indeed:

1
e € 01 IMSEe > NI < 5= [ IMFIEedo
0

C i file
< /\—,,,”f"LILl

(see [10], p. 528 for a discussion about L° boundedness).

Now we can apply Theorem 4.2 to the operator M obtaining that it is bounded
from L}, to weak-L}., which is precisely (2). Then (1) is obtained from (2) by
using Kolmogorov’s inequality. ]

Now if we start with the boundedness M: L}, — weak-L}. and apply the
techniques developed in the proof of Theorem 1.7, we obtain:

COROLLARY 4.4: For0 < a <1< p < o0 M is bounded from L¥, to L}. and
also M, is bounded from H}J, to L}J,. and from L{3 to BM.O.1a.
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Remark 4.5: As one would expect, the behaviour of M continues to be bad
in L. Indeed: M is not bounded from L{; to L{%, as the following example
proves:

For N a fixed positive integer, consider the intervals

i=1 3 .
I;:[ 2' 1] and J—[T’N, ISI,]SN,

and the function

N
Fn(z,w) = Y N (2) Xy (w).

j=1
Then )
||FN||L“(‘ (d2) =esssup/ |Fn(z,w)|dw
= esssupZXll (z)=1.
i=1
On the other hand ’

N
MFy(z,w) =Y N(MX;(2))Xs;(w).

i=1
As in Remark 2.9, we observe that
MXp(z)>1/4 f1<j<N and z€[0,27"]
Therefore

. N @ 1/a
IMFxlLg, = esssup ( /0 (E N(MXy;(z))Xy; (w)) dw)

LN 1/
= essm:p (/ Z N (MXp,(x))* Xy (w)dw)

0 j=1

_esssup(ENa My (2))*)/* > -N.

1
j=1 4

|
Theorem 4.3 and Corollary 4.4 are new for M. The corresponding results for

the conjugate function have been proved by Bourgain (see [4]) with a different
method.
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